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We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems
with nonhierarchical borders between regular and chaotic regions with positive measures. We show that the
stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs
through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent �
=2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to
systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of
infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can
be composed of a sum of exponentials or a sum of power laws, depending on the relative contribution of the
primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for
area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.
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I. INTRODUCTION

Hamiltonian systems usually exhibit divided phase
spaces, where regular and chaotic regions coexist. An impor-
tant property of chaotic trajectories in divided phase spaces
is the intermittent behavior with sporadically long periods of
time spent near the border of regular regions �1�. Because of
this stickiness and the ergodicity of the chaotic regions, even
small islands can have a large effect on global properties of
the system, such as transport �2� and decay of correlations
�1�. The stickiness can be quantified in terms of the distribu-
tion P�T� of recurrence times T of a typical trajectory to a
predefined recurrence region, usually taken away from regu-
lar islands. For fully chaotic hyperbolic systems, the recur-
rence time distribution �RTD� decays exponentially �3�,
while for Hamiltonian systems with divided phase space the
RTD has been argued to decay approximately as a power law
P�T��T−�� for large T, where �� is a scaling exponent
�1,2,4–6�. For power-law decay, the cumulative RTD is
given by

Q��� � �
T=�

�

P�T� � �−�, �1�

where �=��−1. We say that a system has the property of
stickiness if Q��� decays at least as slowly as �−� for some
��0. The existence of a finite mean recurrence time implies
��1 �2�. Experimental evidence of stickiness has been ob-
served, for example, in the transport of particles advected by
fluid flows �7� and in the fluctuations of the conductance in
chaotic cavities �8�.

In Hamiltonian systems, the border between a regular and
chaotic region often presents a complex hierarchical struc-
ture of Kolmogorov-Arnold-Moser �KAM� islands and Can-

tori. Cantori are invariant Cantor sets that work as partial
barriers to the transport close to KAM islands �4,9�. Al-
though many properties of this structure are well understood,
their consequences to the dynamics are still a matter of in-
tense study �2,5,6,10�. Even in the simplest case of two-
dimensional systems, a number of nonequivalent models
have been proposed to describe the stickiness of chaotic tra-
jectories. Meiss and Ott introduced a Markov-tree model that
accounts for the hierarchical structure and predicts a scaling
exponent �=1.96 �4�. Chirikov and Shepelyansky used
renormalization arguments at the breakdown of the golden
mean torus to predict a universal exponent �=3 �5�.
Zaslavsky and co-workers applied different renormalization
arguments to the case of self-similar island chains, obtaining
simple relations between � and the scaling properties of
these chains �2�. There is also strong evidence of other sticki-
ness mechanisms in generic Hamiltonian systems �11–14�.
The effects described in these previous works typically co-
exist and are responsible for finite-time numerical estimates
of � lying in the interval 1.5���2.5 �6�. However, because
the convergence in Hamiltonian systems can take an arbi-
trarily long time, in general, it is not even clear whether the
RTD approximates a power-law distribution in the
asymptotic limit. This slow convergence has inspired Motter
and co-workers to introduce a model that accounts for the
effects of the Cantori structure at finite times �15�. While the
general asymptotic behavior remains unresolved, the insight
provided by the study of classes of comprehensible Hamil-
tonian systems is of fundamental importance.

In this paper, we investigate a mechanism for the sticki-
ness of chaotic trajectories in Hamiltonian systems with
nonhierarchical borders between regular and chaotic regions
when both regions can have positive measures. Examples of
systems with such a sharply divided phase space include
piecewise-linear area-preserving maps �16,17� and mush-
room billiards �18,19�. In Hamiltonian systems, it is a com-
mon sense statement to relate the stickiness to the presence
of hierarchical structures of KAM islands and Cantori. While*Electronic address: edugalt@pks.mpg.de
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this statement by itself is not wrong, here we show that regu-
lar islands with nonhierarchical borders also stick. Our re-
sults are valid for both zero- and positive-measure regular
islands, and include as particular cases previous findings for
systems not exhibiting KAM islands, such as the Sinai and
stadium billiards �20–23�. We find that the stickiness near
nonhierarchical borders occurs due to the presence of one-
parameter families of marginally unstable periodic orbits
�MUPOs�. Based on the analysis of MUPOs, we show that
the recurrence time does follow a power-law distribution and
that the scaling exponent is �=2 in two-dimensional sharply
divided phase spaces, irrespective of other details of the sys-
tem. We also study the properties of generic perturbations of
these systems. Based on numerical simulations of mushroom
billiards perturbed by magnetic fields, we observe that the
perturbations generate hierarchical structures of KAM is-
lands and Cantori of the same nature of those observed in
typical Hamiltonian systems. The perturbation of Hamil-
tonian systems with sharply divided phase space thus repre-
sents a route to Hamiltonian systems with hierarchical phase
space. Previously considered routes start either from fully
integrable or fully chaotic configurations. The onset of hier-
archical structures introduces oscillations in the RTD, which
we show to be related to the relative contribution of the
primary and secondary structures of the hierarchy.

The paper is organized as follows. In Sec. II, we analyze
the stickiness in sharply divided phase spaces. In Sec. III, we
consider the effect of the hierarchical structures when a sys-
tem with sharply divided phase space is perturbed. Discus-
sion and conclusions are presented in the last section.

II. SHARPLY DIVIDED PHASE SPACE

We study the stickiness of chaotic trajectories in two-
dimensional Hamiltonian systems with nonhierarchical bor-
ders between the regions of chaotic and regular motion. As
examples, we consider piecewise-linear area-preserving
maps and mushroom billiards in Secs. II A and II B, respec-
tively. In contrast to the previously considered stadium and
Sinai billiards, in these systems both the chaotic and regular
regions of the phase space have a positive measure. The
scaling exponent �=2 is derived in Sec. II C.

A. Piecewise-linear maps

Consider two-dimensional area-preserving maps of the
form

yn+1 = yn + Kf�xn� mod 1,

xn+1 = xn + yn+1 mod 1, �2�

where K is a parameter that controls the nonlinearity. For
f�xn�=sin�2�xn�, Eq. �2� corresponds to the standard map,
which has served as a prototype of a Hamiltonian system in
numerous studies of stickiness in hierarchical phase space
�1,2,5,6,24�.

However, for f�xn� defined as a piecewise-linear function
of the interval xn� �0,1�, the phase space of map �2� can be
sharply divided in the sense that regular and chaotic regions

are separated by a simple curve �25�. As shown in Refs.
�25–27�, the form and distribution of the regular regions in
general depend on the function f and on the parameter K. In
the case of hierarchical distribution of islands, it has been
shown that the stickiness of chaotic trajectories leads to
anomalous diffusion in the extended phase space of these
maps �28�.

To quantify the stickiness in the case of sharp border, we
consider two simple examples with a single regular island.

�i� The first example is obtained for

f�xn� = 1 − �2xn − 1� , �3�

and was called the continuous sawtooth map in Ref. �17�.
The phase space of this map is shown in Fig. 1�a� for K
=3/2. It was argued in Ref. �17� that in this case a single
regular island exists �Fig. 1�a�, triangular region�. As we will
show, the absence of other islands and the ergodicity of the
chaotic region do not rule out the possible existence of zero-
measure sets of MUPOs in the chaotic region. In this paper
we use the acronym MUPOs to refer to periodic orbits in
contact with the chaotic components that have zero
Lyapunov exponents and real eigenvalues with modulus 1. In
sharply divided phase spaces, we regard the borders of regu-
lar islands as families of MUPOs whenever they are periodic.
For example, for the continuous sawtooth map, the following
sets and their images correspond to one-parameter families
of period-three MUPOs: 	x= 1

6 , 1
6 �y�

1
3

, 	x= 1

3 , 1
3 �y�

2
3

,

and 	x= 1
2 , 1

2 �y�1
, where the latter is at the border of the
island. These families of MUPOs correspond to the straight
lines in Fig. 1�a�.

�ii� A second example of sharply divided phase space is
obtained for

f�xn� = �− xn if 0 � xn �
1
4 ,

− 1/2 + xn if 1
4 � xn �

3
4 ,

1 − xn if 3
4 � xn � 1,

� �4�

as considered in Ref. �16�. The properties of map �2�–�4�
with K=2 are essentially the same as the continuous saw-
tooth map with K= 3

2 �Fig. 1�b� vs Fig. 1�a��. In particular,
the phase space of maps �2�–�4� has a single regular island.
The only relevant difference is that in this case there is no
other family of MUPOs apart from the border of the island.

In the stickiness of a chaotic trajectory, the trajectory ap-
proaches a family of MUPOs and follows a nearly periodic
dynamics for a long period of time before leaving the neigh-
borhood of the MUPOs �inset of Fig. 1�c��. In Fig. 2, we
show the trajectories that stick to the MUPOs at the border of
the regular island and remain in the neighborhood of the
island after n�=1, 2, 4 and 1000 iterations of the continuous
sawtooth map. In general, the closer to the island the longer
it will take for the trajectory to leave. This stickiness is prop-
erly quantified in terms of the RTD for a recurrence region
taken apart from islands. We have performed numerical
simulations for two different configurations presenting
sharply divided phase spaces: the continuous sawtooth map
with K= 3

2 �Fig. 1�a�� and maps �2�–�4� with K=2 �Fig. 1�b��.
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As shown in Fig. 1�c�, in both cases the cumulative RTD is
best approximated by a power law with a scaling exponent
�=2.

We have found similar results for other piecewise-linear
area-preserving maps with polygonal islands, which were
obtained from the maps considered above for different
choices of the parameter K and from a different map studied
in Ref. �25�. There are cases when the results described in
this section and the theory of Sec. II C do not apply, such as
when the regular islands are elliptical and the outermost
torus is quasiperiodic. Nevertheless, we observed that in
many of these cases the exponent �=2 also fits the power-
law tails of the numerically obtained RTD.

B. Mushroom billiards

Billiards can be used as simple models in the study of
Hamiltonian systems. Recently, Bunimovich introduced the
so-called mushroom billiards �19�, which are billiards that
have a single regular and a single chaotic ergodic region. A
typical mushroom billiard is defined by a semicircle �hat�
placed on top of a rectangle �foot�, as depicted in Fig. 3�a�.
The phase space is described by the normalized position x on
the boundary of the billiard and angle 	� �−0.5,0.5� with
respect to the normal vector right after the specular reflec-
tion. The regular region corresponds to the orbits in the hat

FIG. 1. �Color online� �a�
Phase-space portrait of the con-
tinuous sawtooth map for K= 3

2 .
The dots correspond to 104 itera-
tions of a chaotic trajectory and
the blank region corresponds to
the regular island. The straight
lines represent three different
families of period-three MUPOs
�see text�, and the different sym-
bols correspond to specific MU-
POs in one of these families. �b�
Phase-space portrait of maps
�2�–�4� for K=2. We plot −0.5
�y�0.5 in �a� and −0.5�x ,y
�0.5 in �b� for visualization con-
venience. �c� From bottom to top,
the cumulative RTDs of the maps
considered in �a� and �b� �multi-
plied by a factor of 10 for clarity�.
The upper curve is a straight line
with slope �=2. Inset: distance of
a chaotic trajectory to the border
of the island in �a� during an event
with recurrence time T=335.

FIG. 2. Phase-space portrait of the continuous sawtooth map for
K= 3

2 showing the initial conditions of the trajectories that remain
inside the dashed triangle for at least n�=1, 2, 4 and 1000 iterations
of the map, respectively. The inner triangle corresponds to the regu-
lar island. We plot 0�x�1.5 and −1�x�1 for visualization
convenience.
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of the mushroom that never cross the dashed circle of radius
r in Fig. 3�a�. The border between the regular and chaotic
region of the mushroom billiard is therefore nonhierarchical,
as shown in Fig. 3�b�.

Mushroom billiards have two different classes of MUPOs,
as illustrated in Fig. 3�a�. One of them corresponds to orbits
bouncing between the parallel walls in the foot of the mush-
room. Similar MUPOs are also found in many other billiards
with parallel walls, such as the Sinai and stadium billiards
�20–23�. The other and more interesting class of MUPOs
corresponds to periodic orbits in the chaotic region that never
leave the hat of the mushroom. In a previous study �18�, we
have shown that there is usually a complex distribution of
these MUPOs close to the regular region and in contact with
the chaotic component. The border of the regular island can
be regarded as MUPOs of this class. We have found similar
MUPOs in other billiards with circular components, such as
annular billiards �29�.

A relevant point concerning the stickiness in mushroom
billiards is that the scaling exponent of the cumulative RTD
is again �=2, regardless of the control parameter 0�r /R
�1, as shown in Fig. 3�c�. In this case, the whole foot of the
mushroom is taken as the recurrence region in order to avoid
the trivial parallel wall MUPOs. The injection and escape
mechanism of the chaotic trajectories near the island are
slightly different from those observed in the continuous saw-

tooth map because in mushroom billiards there are escaping
regions tangent to the island and the injection and escape
occur in a single iteration �inset of Fig. 1�c� vs inset of Fig.
3�c�� �18�. However, from a more fundamental point of view,
the stickiness is remarkably similar in these systems because
in both cases the stickiness is mediated by MUPOs and the
RTD has an exponent �=2. Altogether, this suggests the pos-
sible existence of a universal scenario for the stickiness of
chaotic trajectories in systems with divided phase space, as
considered in the next section.

C. Scaling exponent: Theory

We now derive the scaling exponent �=2 for the cumu-
lative RTD of two-dimensional systems with sharply divided
phase spaces. Our theory applies to the class of systems pre-
senting one-dimensional families of MUPOs. This includes
as particular cases some systems without regular islands,
such as the stadium and Sinai billiards, whose cumulative
RTDs are known to be governed by an exponent �=2
�22,23�. Most importantly, our results also apply to systems
with mixed phase space, such as those considered in the
previous sections. The theory remains valid when the orbit at
the border of the regular region is quasiperiodic and the first-
escape region is tangent to the border that is, if there are
trajectories arbitrarily close to the island that move away in

FIG. 3. �Color online� �a�
Typical mushroom billiard, de-
fined by the geometric parameters
�r ,R ,h�. Two MUPOs are shown
in dotted lines. �b� Phase-space
representation of the semicircular
hat of the mushroom billiard with
r /R=0.5. �c� From bottom to top,
RTDs for r /R=0.6, 0.75, and 0.5
�multiplied by a factor of 2 for
clarity�. The upper curve is a
straight line with slope �=2. In-
set: distance of a chaotic trajec-
tory to the border of the island
during an event with recurrence
time T=300.

ALTMANN, MOTTER, AND KANTZ PHYSICAL REVIEW E 73, 026207 �2006�

026207-4



one or few time steps, such as in the mushroom billiards
�18�.

The essential features of the systems considered in the
previous sections are captured by an area-preserving map
M�x ,	� defined on the torus and that contains a one-
parameter family of MUPOs of period q. For concreteness,
we assume that the family of MUPOs is 	xi�x�xf ,	=	0
.
The phase space of map M�x ,	� is sketched in Fig. 4�a� and
a possible configuration space in Fig. 4�b�. The following
analysis does not depend on whether the MUPOs are in the
chaotic sea or at the border of a regular island.

Consider small perturbations of a MUPO �x0 ,	0�.
�1� If �x� ,	��= �x0+
x ,	0� and xi�x��xf, another peri-

odic orbit of the set of MUPOs is obtained. In this case
Mq�x� ,	0�= �x� ,	0�, which shows that the perturbation nei-
ther grows nor shrinks.

�2� If �x� ,	��= �x0 ,	0+��, the perturbation in the 	 direc-
tion does not grow. On the other hand, in the x direction the
trajectory is not strictly periodic anymore and there is a dis-
placement �x every period q: Mq�x0 ,	��= �x0+�x ,	��.

Both effects �1� and �2� have to be taken into account
when a generic perturbation is considered:

Mq�x�,	�� � Mq�x0 + 
x,	0 + �� = �x� + �x,	�� . �5�

After q iterations, the same arguments used above for �x� ,	��
apply to �x�+�x ,	��. We thus see that the perturbed trajec-
tory follows the dynamics �5�, remaining at a constant dis-
tance � from the family of MUPOs, until it travels x=xf
−x0 reaching the end x=xf of the family of MUPOs �see Fig.
4� �30�. We note that Eq. �5� implies a linear growth of the
perturbation in time, which is consistent with the marginal
instability of the fixed point that forbids exponential growth
of perturbations.

The displacement �x is related to the difference between
the frequency of the perturbed and unperturbed orbits, and
can therefore be approximated linearly as

�x = D� , �6�

in the limit of small �. For the continuous sawtooth map with
K= 3

2 , one obtains D=6. In the case of billiards with parallel
walls D=2l, where l is the distance between the walls. For

MUPOs in circularlike billiards, such as mushroom and an-
nular billiards, D=2qR, where R is the radius of the circle.

The time a perturbed trajectory takes to reach xf and es-
cape from the dynamics �5� is given by

T =
x

�x
�

1

�
�7�

for small �. In what follows, we see that this time is equiva-
lent to the recurrence time if the initial conditions are chosen
properly. Relation �7� shows that the smaller the perturbation
the longer the time the trajectory takes to escape. The
asymptotic distribution of escape times P�T� as a function of
the distribution of perturbations p��� is given by

P�T� =
p���

�dT/d��
� p����2, with � � 1/T . �8�

The distribution p��� depends on the choice of the initial
conditions.

For instance, choosing the initial conditions in the neigh-
borhood of the family of MUPOs leads to a rapid conver-
gence of p��� to the invariant measure of the system. In this
case, p��� can be asymptotically regarded as a constant.
From Eqs. �7� and �8�, we obtain �tr� =2 for the power-law
exponent of the distribution of escape times, or �tr=1 for the
cumulative distribution. This description is not valid when
recurrences are calculated, because the initial conditions are
chosen inside the recurrence region and thus away from the
MUPOs. In this case, the convergence of p��� to the invari-
ant measure is much slower �algebraically for the stadium
billiard �23�� and for any finite time p���→0 for �→0.
However, we show in the Appendix that the scaling exponent
for this second case can be derived from the first: the power-
law exponent increases by +1 when the initial conditions are
taken away from the MUPOs, i.e., �=�tr+1 �see also Refs.
�5,23,31,32��. In systems with a one-parameter family of
MUPOs, this leads to the asymptotic exponent �=2 for the
cumulative RTD, in agreement with our numerical results.

Since every family of MUPOs contributes with the same
exponent �=2 asymptotically, the exponent does not depend
on the possible presence of other families of MUPOs in ad-
dition to the one at the border of the regular islands. Indeed,
a large number of other families is observed in mushroom
billiards �18�, a small number in the continuous sawtooth
map and none in the case of maps �2�–�4�, and the scaling
exponent is the same in each of these cases.

It would be interesting to verify the generality of the ex-
ponent �=2 �33�, for example, by investigating other sys-
tems presenting sharply divided phase spaces �34�. The
stickiness through MUPOs described above resembles the
mechanism underlying stickiness and anomalous diffusion in
one-dimensional maps with marginally unstable fixed points
�35�. Here we have considered two-dimensional systems and
we believe that similar results hold true in higher dimen-
sional Hamiltonian systems.

III. HIERARCHICAL PHASE SPACE

Now we consider perturbations to systems with sharply
divided phase space. This leads us to the problem of sticki-

FIG. 4. �Color online� �a� Illustration of the dynamics of a per-
turbed MUPO �x0 ,	0+�� in the phase space �see text�. �b� The
corresponding dynamics in the configuration space of a billiard with
parallel walls �q=2�.
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ness in Hamiltonian systems with the usual complex hierar-
chy of infinitely many KAM islands and Cantori. As a model
system we consider the mushroom billiard perturbed by a
magnetic field, a system that we refer to as the magnetic
mushroom billiard, that allows for a direct comparison be-
tween the effects of hierarchical and nonhierarchical borders.

A. Perturbation of nonhierarchical borders

A common feature of the systems considered in the pre-
vious sections is that their dynamics is piecewise smooth and
presents abrupt changes. These abrupt changes, generated by
nonsmooth functions f in map �2� and sharp corners in the
mushroom billiard, are responsible for the creation of sharply
divided phase spaces. Generic perturbations of these systems
are expected to smooth down the dynamics and introduce
hierarchies of KAM islands and Cantori. Examples of such
perturbations include to smoothen functions �3� or �4� in the
case of piecewise-linear maps and soften the walls in the
case of mushroom billiards. In the case of a billiard with

charged particles, we can also perturb the system with a
magnetic field, as studied below.

Consider the mushroom billiard studied in Sec. II B sub-
ject to uniform transverse magnetic field B and consider the
dynamics of charged particles within this billiard. Due to the
Lorentz force, the charged particles move on circular orbits.
We choose the charge of the particles and orientation of the
magnetic field such that the trajectories are oriented counter-
clockwise and have a radius

L �
1

B
, �9�

which is used as a control parameter. This parameter has to
be compared with the geometric scales of the billiard defined
in Fig. 3�a� �in our simulations we use R=2 and r=1�. The
unperturbed mushroom billiard corresponds to L=�.

Previous works on magnetic billiards �36� have shown
that the curvature of the trajectories often leads to the cre-
ation of KAM tori �37,38� in fully chaotic systems and cha-

FIG. 5. Magnification of the phase-space portrait of the magnetic mushroom billiard at the border between the chaotic and regular regions
for r /R=0.5 and various values of the magnetic field.
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otic regions �39� in integrable systems. Mushroom billiards
have both integrable and chaotic regions in the phase space
and both effects are expected to take place. More interest-
ingly, mushroom billiards also have MUPOs that are ex-
pected to undergo a transformation when the system is per-
turbed. Indeed, because the eigenvalues associated to these
orbits are real and have modulus 1, arbitrarily small pertur-
bations are expected to generate elliptic or saddle points in
the neighborhood of the regular island of the unperturbed
billiard. These effects of the magnetic field in the mushroom
billiard are shown in Fig. 5, where a representative magnifi-
cation of the phase space at the border of chaos is shown for
different values of L. The hierarchy of KAM islands and
Cantori are clearly visible, providing evidence that the com-
plete picture of the Hamiltonian chaos is obtained in mag-
netic mushroom billiards.

The emergence of complex structures of KAM islands in
the phase space influences the stickiness, as shown in Fig. 6
for RTD of magnetic mushroom billiards with L=100 and
L=50. Comparing these distributions with those of the un-
perturbed system �L=��, we note the presence of fluctua-
tions around a slower power-law tendency ���2�. This re-
sult indicates that, as intuitively expected, a hierarchical
border sticks the trajectories in a more effective way than a
nonhierarchical border. While the presence of a single family
of MUPOs in a hierarchical phase space would be enough to
guarantee ��2, we observe that, generically, all the families
of MUPOs disappear. One could expect that the outermost
torus of a regular island, which is marginally unstable, could
play the role of the MUPOs described in Sec. II. However,
there is usually an infinite number of Cantori that accumulate
near the island invalidating relations �5� and �6� and thus the
derivation of the exponent �=2. In the next section we study
carefully the effect of such a hierarchical border on the
stickiness.

B. Hierarchical phase-space scenarios

We now investigate the origin of the oscillations in the
RTDs shown in Fig. 6. We focus initially on the parameter
L=50. For this parameter, many KAM tori are destroyed but
the chain of islands and Cantori are still clearly visible in the
phase space, as shown in Fig. 7. The different density of
points seen in Fig. 7�a� is related to the presence of chains of
islands and Cantori acting as partial barriers �9� to the trans-
port in the 	 direction. In order to associate the presence of
these barriers to the RTD, we study the minimum distance
between the trajectory and the main island before the trajec-
tory leaves the neighborhood of the island and visits the
recurrence region. In our simulations we use the minimum
collision angle 	 of the trajectory as a measure of the dis-
tance because the barriers mimic the original tori and have
approximately constant 	, and we take the foot of the mush-
room billiard as the recurrence region. The fraction of events
that have a minimum angle 	 is defined as g�	�d	=�	 /�,
where �	 is the number of recurrences that have a minimum
angle in the interval �	 ,	+d	� and � is the total number of
recurrences. Numerical results for g�	� with L=50 are shown
in Fig. 7�b�. The function g�	� goes to zero at the angles that
correspond to the position of the barriers because the trajec-
tories that manage to pass a barrier quickly spread through-
out the next chaotic region. From the behavior of g�	� in Fig.
7�b�, we can resolve five different regions limited by these
barriers. To associate these regions with the RTD, we label
all the recurrence events from �1�–�5� according to the num-
ber of regions the trajectory penetrates before returning to
the recurrence region. The RTDs of each of these groups of
recurrence events are shown in Fig. 7�c�. The RTD of all the
events corresponds to the sum of these partial RTDs and is
shown in the same figure �upper solid curve�. The partial
RTD of each region �1�–�5� presents a relatively peaked
maximum followed by an exponential decay. Accordingly,
most of the orbits that have the same recurrence time T pen-
etrate the same number of barriers �note the logarithmic scale
in Fig. 7�c��. These results indicate that, for T�106, the
stickiness is dominated by the primary chain of barriers
around the main regular island, that is, the contribution of
barriers associated to secondary islands is negligible. These
results also show that the oscillations observed in the RTD
around the power-law behavior are intrinsically associated to
the presence of the barriers in the phase space.

These stickiness properties agree well with the predictions
of the model proposed by Motter et al. in Ref. �15�. In that
paper, the hierarchy of Cantori is modeled by a chain of
coupled hyperbolic systems, where each hyperbolic system
models the area of the phase space limited by successive
Cantori. One of the strengths of this model is that it predicts
not only the asymptotic behavior of the nonhyperbolic dy-
namics around KAM islands but also the finite-time dynam-
ics assessable in numerical simulations and experiments.
This model predicts that the survival probability of particles
in the neighborhood of KAM islands fluctuates around a
power–law and is composed of a sum of exponentials asso-
ciated to the Cantori. Our results in Fig. 7 show that this
behavior is indeed present in real Hamiltonian systems. As
shown below, this picture changes when secondary structures

FIG. 6. Cumulative RTDs for the magnetic mushroom billiard
with r /R=0.5 and different values of the magnetic field. From bot-
tom to top the lines represent: a power law with �=2, the numerical
results for L=� �shifted downward by two decades for clarity�, L
=100 �shifted downward by one decade�, and L=50, and a power
law with �=1.
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of the hierarchy are relevant. This more general stickiness
scenario is observed in the mushroom billiard for larger val-
ues of the magnetic field �e.g., L=10�.

In Fig. 8, we show the same as in Fig. 7 for the parameter
L=10. The effect of the primary barriers is still important, as
shown in Fig. 8�b� where these barriers correspond to zeros
of g�	�. However, as shown in Fig. 8�c�, the partial RTDs
corresponding to regions �1�–�5� exhibit a power law rather
than an exponential decay. For instance, the RTD of trajec-
tories belonging to region �2� exhibits an approximate
power-law decay that makes these recurrence events domi-
nant not only for small times �10�T�500� but also for very
large times �T105�. On the other hand, the RTD of events
associated to region �4� does not dominate the �total� RTD at
any time. The slower decay of the RTD of region �2� is a
consequence of the stickiness to the chain of secondary is-
lands shown at the top of Fig. 8�a�. In this figure, we show
two representative trajectories with recurrence time T8
�104. The first �trajectory 1� penetrates only two regions
and sticks to a secondary island. The second �trajectory 2�
penetrates five regions and approaches the main island. In
the context of stochastic models �24,40�, asymptotic effects
of secondary islands can be accounted for by the Markov-
tree models �4�. In a deterministic framework, the full hier-
archy of islands can be accommodated within a chain model
of nonhyperbolic systems or a tree model of hyperbolic sys-

tems, which are straightforward generalizations of the model
introduced by Motter et al. �15�.

IV. CONCLUSIONS

We have studied the stickiness of chaotic trajectories in
Hamiltonian systems with sharply divided phase spaces,
which are characterized by nonhierarchical borders between
the regions of chaotic and regular motion. The stickiness
occurs through the approach to one-parameter families of
MUPOs in contact with the chaotic region. The main char-
acteristics of this stickiness scenario are the exponent �=2
for the power-law decay of the cumulative RTD and the long
intervals of regular motion at a constant distance from fami-
lies of MUPOs. Dynamical systems described by this sce-
nario include mushroom billiards and various piecewise-
linear area-preserving maps.

Generic perturbations applied to systems with sharply di-
vided phase spaces destroy the MUPOs and introduce hier-
archies of regular islands and Cantori. We believe that these
perturbations can serve as a paradigm to the study of sticki-
ness in generic Hamiltonian systems. Using as an example,
mushroom billiards perturbed by a transverse magnetic field,
we characterize two different scenarios of stickiness in the
presence of perturbations. For small perturbations, the sticki-
ness is dominated by the primary chain of Cantori, which

FIG. 7. Analysis of the mag-
netic mushroom billiard with L
=50: �a� phase-space magnifica-
tion at the border of chaos; �b�
fraction g�	� of recurrences that
have 	 as their minimal angle; �c�
the RTD of all trajectories �upper
solid curve�, and the RTDs of the
trajectories in regions �1�–�5� of
�b� �lower solid curves�. The
lower curves in �c� are divided by
10 for clarity.
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work as partial barriers to the transport around the main
regular island. In this case, the RTD is composed of a sum of
exponential distributions associated to the probability of
crossing each of these barriers. For increasing perturbations,
the primary barriers weaken while the secondary islands and
the corresponding sticking regions grow. For large perturba-
tions, the stickiness of the secondary structures becomes rel-
evant and the exponential components of the RTD are con-
verted themselves into power-law distributions. This
provides direct evidence of the effects of Cantori structures
at finite times, in strong support of the model introduced in
Ref. �15� and its generalizations.

The asymptotic behavior of the RTD, which has been a
matter of considerable recent debate �5,6�, cannot be re-
solved alone by numerical experiments. Our simulations sug-
gest that the hierarchical structures enhance the stickiness of
nonhierarchical borders, what would lead to an upper bound
2 for the scaling exponent �. This upper bound is guaranteed
when the phase space has one or more families of the MU-
POs described in Sec. II. However, in general, this numerical
evidence of upper bounds should be taken with caution be-
cause one cannot neglect the possibility that the hierarchical
structures will reduce the stickiness for asymptotically large
times. For general Hamiltonian systems, even the question of
whether the oscillations in the RTD vanish asymptotically,
giving rise to a well-defined power-law exponent, is a prob-
lem yet to be settled. Our results provide an answer to this

question for an important class of Hamiltonian systems with
sharply divided phase space.
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APPENDIX

Consider a uniform distribution of initial conditions in the
neighborhood of a sticking region of the phase space, as
usually studied in problems of transient chaos, and consider
the time it takes for the corresponding trajectories to escape
to a predefined region away from the sticking region. The
distribution S��� of escape times longer than � is proportional
to the measure ���� of the region of the phase space to which
the trajectories stick for a time longer than �. Due to the
ergodicity,

S��� � ���� =
t�

t
, �A1�

where t� is the total time spent inside the sticking region and
t is the total observation time.

FIG. 8. �Color online� Analy-
sis of the magnetic mushroom bil-
liard with L=10. �a� Phase-space
magnification with two typical
sticking trajectories with recur-
rence time T8�104: trajectory
1 sticks near the upper island and
trajectory 2 fills the chaotic re-
gion. �b� Fraction g�	� of recur-
rences that have 	 as their mini-
mal angle. �c� The RTD of all
trajectories �upper solid curve�
and the RTDs of the trajectories in
regions �1�–�5� of �b� �see legend�.
The lower curves in �c� are di-
vided by 10 for clarity.
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On the other hand, in the study of recurrence problems,
one usually initializes a single trajectory in a recurrence re-
gion away from the sticking region and computes the time T
the trajectory takes to return to that region. If the trajectory is
followed for a long time t, the cumulative RTD is

Q��� =
N�

N
, �A2�

where N� is the number of recurrences with time T�� and N
is the total number of recurrences observed in time t. The
relation between the times in Eq. �A1� and the number of
recurrences in Eq. �A2� is given by �5�

t � N�T� , �A3�

t� � N�� , �A4�

where �T� is the average recurrence time. Altogether, this
leads to

Q��� �
S���

�
. �A5�

In particular, if the escape times follow a power-law distri-
bution S�����−�tr, then the cumulative RTD is Q�����−�

where

� = �tr + 1. �A6�

An equivalent relation was obtained in Ref. �32� for chaotic
scattering problems, another example where the trajectories
are initialized away from the sticking region.
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